Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sports Sci Med ; 23(1): 236-257, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455434

RESUMEN

Physical exercise and dieting are well-known and effective methods for fat loss and improving cardiovascular health. However, different individuals often react differently to the same exercise regimen or dietary plan. While specific individuals may undergo substantial fat loss, others may observe only limited effects. A wide range of inter-individual variability in weight gain and changes in body composition induced by physical exercises and diets led to an investigation into the genetic factors that may contribute to the individual variations in such responses. This systematic review aimed at identifying the genetic markers associated with fat loss resulting from diet or exercise. A search of the current literature was performed using the PubMed database. Forty-seven articles met the inclusion criteria when assessing genetic markers associated with weight loss efficiency in response to different types of exercises and diets. Overall, we identified 30 genetic markers of fat-loss efficiency in response to different kinds of diets and 24 in response to exercise. Most studies (n = 46) used the candidate gene approach. We should aspire to the customized selection of exercise and dietary plans for each individual to prevent and treat obesity.


Asunto(s)
Ejercicio Físico , Obesidad , Humanos , Marcadores Genéticos , Obesidad/genética , Obesidad/prevención & control , Pérdida de Peso/genética , Dieta
2.
Genes (Basel) ; 14(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36672945

RESUMEN

The kidney and brain expressed protein (KIBRA) plays an important role in synaptic plasticity. Carriers of the T allele of the KIBRA (WWC1) gene rs17070145 C/T polymorphism have been reported to have enhanced spatial ability and to outperform individuals with the CC genotype in working memory tasks. Since ability in chess and science is directly related to spatial ability and working memory, we hypothesized that the KIBRA T allele would be positively associated with chess player status and PhD status in science. We tested this hypothesis in a study involving 2479 individuals (194 chess players, 119 PhD degree holders in STEM fields, and 2166 controls; 1417 males and 1062 females) from three ethnicities (236 Kazakhs, 1583 Russians, 660 Tatars). We found that frequencies of the T allele were significantly higher in Kazakh (66.9 vs. 55.1%; p = 0.024), Russian (44.8 vs. 32.0%; p = 0.0027), and Tatar (51.5 vs. 41.8%; p = 0.035) chess players compared with ethnically matched controls (meta-analysis for CT/TT vs. CC: OR = 2.05, p = 0.0001). In addition, none of the international chess grandmasters (ranked among the 80 best chess players in the world) were carriers of the CC genotype (0 vs. 46.3%; OR = 16.4, p = 0.005). Furthermore, Russian and Tatar PhD holders had a significantly higher frequency of CT/TT genotypes compared with controls (meta-analysis: OR = 1.71, p = 0.009). Overall, this is the first study to provide comprehensive evidence that the rs17070145 C/T polymorphism of the KIBRA gene may be associated with ability in chess and science, with the T allele exerting a beneficial effect.


Asunto(s)
Fosfoproteínas , Polimorfismo Genético , Femenino , Humanos , Masculino , Genotipo , Heterocigoto , Péptidos y Proteínas de Señalización Intracelular/genética , Memoria a Corto Plazo , Fosfoproteínas/genética
3.
Genes (Basel) ; 13(11)2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36360211

RESUMEN

There is a wide range of individual variability in the change of body weight in response to exercise, and this variability partly depends on genetic factors. The study aimed to determine DNA polymorphisms associated with fat loss efficiency in untrained women with normal weight in response to a 12-week aerobic training program using the GWAS approach, followed by a cross-sectional study in athletes. The study involved 126 untrained young Polish women (age 21.4 ± 1.7 years; body mass index (BMI): 21.7 (2.4) kg/m2) and 550 Russian athletes (229 women, age 23.0 ± 4.1; 321 men, age 23.9 ± 4.7). We identified one genome-wide significant polymorphism (rs116143768) located in the ACSL1 gene (acyl-CoA synthetase long-chain family member 1, implicated in fatty acid oxidation), with a rare T allele associated with higher fat loss efficiency in Polish women (fat mass decrease: CC genotype (n = 122) -3.8%; CT genotype (n = 4) -31.4%; p = 1.18 × 10-9). Furthermore, male athletes with the T allele (n = 7) had significantly lower BMI (22.1 (3.1) vs. 25.3 (4.2) kg/m2, p = 0.046) than subjects with the CC genotype (n = 314). In conclusion, we have shown that the rs116143768 T allele of the ACSL1 gene is associated with higher fat loss efficiency in response to aerobic training in untrained women and lower BMI in physically active men.


Asunto(s)
Estudio de Asociación del Genoma Completo , Obesidad , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Adolescente , Obesidad/genética , Estudios Transversales , Índice de Masa Corporal , Peso Corporal
4.
Mol Biol Rep ; 49(6): 4217-4224, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35292917

RESUMEN

BACKGROUND: Recent research has demonstrated that Type 2 Diabetes (T2D) risk is influenced by a number of common polymorphisms, including MC4R rs17782313, PPARG rs1801282, and TCF7L2 rs7903146. Knowledge of the association between these single nucleotide polymorphisms (SNPs) and body weight changes in different forms of prediabetes treatment is still limited. The aim of this study was to investigate the association of polymorphisms within the MC4R, PPARG, and TCF7L2 genes on the risk of carbohydrate metabolism disorders and body composition changes in overweight or obese patients with early carbohydrate metabolism disorders. METHODS AND RESULTS: From 327 patients, a subgroup of 81 prediabetic female patients (48.7 ± 14.8 years) of Eastern European descent participated in a 3-month study comprised of diet therapy or diet therapy accompanied with metformin treatment. Bioelectrical impedance analysis and genotyping of MC4R rs17782313, PPARG rs1801282, and TCF7L2 rs7903146 polymorphisms were performed. The MC4R CC and TCF7L2 TT genotypes were associated with increased risk of T2D (OR = 1.46, p = 0.05 and OR = 2.47, p = 0.006, respectively). PPARG CC homozygotes experienced increased weight loss; however, no additional improvements were experienced with the addition of metformin. MC4R TT homozygotes who took metformin alongside dietary intervention experienced increased weight loss and reductions in fat mass (p < 0.05). CONCLUSIONS: We have shown that the obesity-protective alleles (MC4R T and PPARG C) were positively associated with weight loss efficiency. Furthermore, we confirmed the previous association of the MC4R C and TCF7L2 T alleles with T2D risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Estado Prediabético , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Metformina/uso terapéutico , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/genética , PPAR gamma/genética , Polimorfismo de Nucleótido Simple/genética , Estado Prediabético/complicaciones , Estado Prediabético/genética , Receptor de Melanocortina Tipo 4/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Pérdida de Peso
5.
J Strength Cond Res ; 33(3): 691-700, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30694969

RESUMEN

Guilherme, JPLF, Egorova, ES, Semenova, EA, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Ospanova, EA, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Govorun, VM, Generozov, EV, Ahmetov, II, and Lancha Junior, AH. The A-allele of the FTO gene rs9939609 polymorphism is associated with decreased proportion of slow oxidative muscle fibers and over-represented in heavier athletes. J Strength Cond Res 33(3): 691-700, 2019-The purpose of this study was to explore the frequency of the FTO T > A (rs9939609) polymorphism in elite athletes from 2 cohorts (Brazil and Russia), as well as to find a relationship between FTO genotypes and muscle fiber composition. A total of 677 athletes and 652 nonathletes were evaluated in the Brazilian cohort, whereas a total of 920 athletes and 754 nonathletes were evaluated in the Russian cohort. It was found a trend for a lower frequency of A/A genotype in long-distance athletes compared with nonathletes (odds ratio [OR]: 0.65; p = 0.054). By contrast, it was found an increased frequency of the A-allele in Russian power athletes. The presence of the T/A + A/A genotypes rather than T/T increased the OR of being a Russian power athlete compared with matched nonathletes (OR: 1.45; p = 0.002). Different from that observed in combat sports athletes of lighter weight categories, the A-allele was also over-represented in combat sports athletes of heavier weight categories. The presence of the T/A + A/A genotypes rather than T/T increased the OR of being a combat sports athlete of heavier weight categories compared with nonathletes (OR: 1.79; p = 0.018). Regarding the muscle fibers, we found that carriers of the A/A genotype had less slow-twitch muscle fibers than T-allele carriers (p = 0.029). In conclusion, the A/A genotype of the FTO T > A polymorphism is under-represented in athletes more reliant on a lean phenotype and associated with decreased proportion of slow-twitch muscle fibers, while is over-represented in strength and heavier athletes.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Atletas , Peso Corporal/fisiología , Fibras Musculares de Contracción Lenta/metabolismo , Fuerza Muscular/fisiología , Deportes/fisiología , Adulto , Alelos , Brasil , Estudios de Cohortes , Femenino , Genotipo , Humanos , Masculino , Estrés Oxidativo , Fenotipo , Polimorfismo de Nucleótido Simple , Federación de Rusia , Adulto Joven
6.
Biol Sport ; 35(2): 105-109, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30455538

RESUMEN

We aimed to replicate, in a specific athletic event cohort (only track and field) and in two different ethnicities (Japanese and East European, i.e. Russian and Polish), original findings showing the association of the angiotensin-II receptor type-2 gene (AGTR2) rs11091046 A>C polymorphism with athlete status. We compared genotypic frequencies of the AGTR2 rs11091046 polymorphism among 282 track and field sprint/power athletes (200 men and 82 women), including several national record holders and Olympic medallists (214 Japanese, 68 Russian and Polish), and 2024 control subjects (842 men and 1182 women) (804 Japanese, 1220 Russian and Polish). In men, a meta-analysis from the two combined cohorts showed a significantly higher frequency of the C allele in athletes than in controls (odds ratio: 1.62, P=0.008, heterogeneity index I 2 =0%). With regard to respective cohorts, C allele frequency was higher in Japanese male athletes than in controls (67.7% vs. 55.9%, P=0.022), but not in Russian/Polish male athletes (61.9% vs. 51.0%, P=0.172). In women, no significant results were obtained by meta-analysis for the two cohorts combination (P=0.850). The AC genotype frequency was significantly higher in Russian/Polish women athletes than in controls (69.2% vs. 42.1%, P=0.022), but not in Japanese women athletes (P=0.226). Our results, in contrast to previous findings, suggested by meta-analysis that the C allele of the AGTR2 rs11091046 polymorphism is associated with sprint/power track and field athlete status in men, but not in women.

7.
Med Sport Sci ; 61: 41-54, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27287076

RESUMEN

Humans vary in their ability to achieve success in sports, and this variability mostly depends on genetic factors. The main goal of this work was to review the current progress in the understanding of genetic determinism of athlete status and to describe some novel and important DNA polymorphisms that may underlie differences in the potential to be an elite athlete. In the past 19 years, at least 155 genetic markers (located within almost all chromosomes and mtDNA) were found to be linked to elite athlete status (93 endurance-related genetic markers and 62 power/strength-related genetic markers). Importantly, 41 markers were identified within the last 2 years by performing genome-wide association studies (GWASs) of African-American, Jamaican, Japanese, and Russian athletes, indicating that GWASs represent a promising and productive way to study sports-related phenotypes. Of note, 31 genetic markers have shown positive associations with athlete status in at least 2 studies and 12 of them in 3 or more studies. Conversely, the significance of 29 markers was not replicated in at least 1 study, raising the possibility that several findings might be false-positive. Future research, including multicentre GWASs and whole-genome sequencing in large cohorts of athletes with further validation and replication, will substantially contribute to the discovery of large numbers of the causal genetic variants (mutations and DNA polymorphisms) that would partly explain the heritability of athlete status and related phenotypes.


Asunto(s)
Rendimiento Atlético , Estudios de Asociación Genética , Marcadores Genéticos , Atletas , Humanos , Fuerza Muscular/genética , Fenotipo , Resistencia Física/genética
8.
Exp Physiol ; 99(8): 1042-52, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24887114

RESUMEN

Muscle fibre type is a heritable trait and can partly predict athletic success. It has been proposed that polymorphisms of genes involved in the regulation of muscle fibre characteristics may predispose the muscle precursor cells of a given individual to be predominantly fast or slow. In the present study, we examined the association between 15 candidate gene polymorphisms and muscle fibre type composition of the vastus lateralis muscle in 55 physically active, healthy men. We found that rs11091046 C allele carriers of the angiotensin II type 2 receptor gene (AGTR2; involved in skeletal muscle development, metabolism and circulatory homeostasis) had a significantly higher percentage of slow-twitch fibres than A allele carriers [54.2 (11.1) versus 45.2 (10.2)%; P = 0.003]. These data indicate that 15.2% of the variation in muscle fibre composition of the vastus lateralis muscle can be explained by the AGTR2 genotype. Next, we investigated the frequencies of the AGTR2 alleles in 2178 Caucasian athletes and 1220 control subjects. The frequency of the AGTR2 C allele was significantly higher in male and female endurance athletes compared with power athletes (males, 62.7 versus 51.7%, P = 0.0038; females, 56.6 versus 48.1%, P = 0.0169) and control subjects (males, 62.7 versus 51.0%, P = 0.0006; elite female athletes, 65.1 versus 55.2%, P = 0.0488). Furthermore, the frequency of the AGTR2 A allele was significantly over-represented in female power athletes (51.9%) in comparison to control subjects (44.8%, P = 0.0069). We also found that relative maximal oxygen consumption was significantly greater in male endurance athletes with the AGTR2 C allele compared with AGTR2 A allele carriers [n = 28; 62.3 (4.4) versus 57.4 (6.0) ml min(-1) kg(-1); P = 0.0197]. Taken together, these results demonstrate that the AGTR2 gene C allele is associated with an increased proportion of slow-twitch muscle fibres, endurance athlete status and aerobic performance, while the A allele is associated with a higher percentage of fast-twitch fibres and power-oriented disciplines.


Asunto(s)
Ejercicio Físico/fisiología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/fisiología , Polimorfismo Genético/genética , Receptor de Angiotensina Tipo 2/genética , Deportes/fisiología , Adulto , Alelos , Atletas , Femenino , Genotipo , Humanos , Masculino , Consumo de Oxígeno/fisiología , Adulto Joven
9.
J Sports Sci ; 32(13): 1286-93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24784145

RESUMEN

Research concerned with predictors of talent in football has highlighted a number of potentially important and partially inherited measures such as body size, anaerobic power, aerobic capacity, agility, psychological profile, game intelligence and susceptibility to injuries. Genotyping for performance-associated DNA polymorphisms at an early age could be useful in predicting later success in football. The aim of the study was to investigate individually and in combination the association of common gene polymorphisms with football player's status. A total of 246 Russian football players and 872 controls were genotyped for 8 gene polymorphisms, which were previously reported to be associated with athlete status. Four alleles (ACE D, ACTN3 Arg577, PPARA rs4253778 C and UCP2 55Val) were first identified, showing discrete associations with football player's status. Next, we determined the total genotype score (TGS, from the accumulated combination of the 4 polymorphisms, with a maximum value of 100 for the theoretically optimal polygenic score) in athletes and controls. The mean TGS was significantly higher in football players (52.0 (17.6) vs. 41.3 (15.5); P < 0.0001) than in controls. These data suggest that the likelihood of becoming a football player depends on the carriage of a high number of "favourable" gene variants.


Asunto(s)
Polimorfismo Genético , Fútbol/fisiología , Población Blanca/genética , Adulto , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Federación de Rusia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...